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We study the four-state antiferromagnetic Potts model on the triangular lattice.
We show that the model has six types of defects which diffuse and annihilate
according to certain conservation laws consistent with their having a vector-
valued topological charge. Using the properties of these defects, we deduce a
(2+2)-dimensional height representation for the model and hence show that
the model is equivalent to the three-state Potts antiferromagnet on the Kagome�
lattice and to bond-coloring models on the triangular and honeycomb lattices.
We also calculate critical exponents for the ground-state ensemble of the model.
We find that the exponents governing the spin�spin correlation function and
spin fluctuations violate the Fisher scaling law because of constraints on path
length which increase the effective wavelength of the spin operator on the height
lattice. We confirm our predictions by extensive Monte Carlo simulations of the
model using the Wang�Swendsen�Kotecky� cluster algorithm. Although this
algorithm is not ergodic on lattices with toroidal boundary conditions, we prove
that it is ergodic on lattices whose topology has no noncontractible loops of
infinite order, such as the projective plane. To guard against biases introduced
by lack of ergodicity, we perform our simulations on both the torus and the
projective plane.

KEY WORDS: Antiferromagnets; Potts models; topological defects; Monte
Carlo methods; ergodicity; critical exponents; height representations.

I. INTRODUCTION

There has been considerable interest over the last few years in the proper-
ties of classical spin systems possessing highly degenerate ground states.
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Many such models, including ice models, (1, 2) the triangular Ising antiferro-
magnet, (3, 4) and dimer models(5, 6) have been found to have ground state
ensembles which display critical properties such as algebraically decaying
spin�spin correlations and divergent fluctuations in the order parameter. It
is now known that these properties are associated with the existence of
interface or ``solid-on-solid'' representations for the models, in which sites
can be assigned heights h which vary smoothly over the lattice and which
can be mapped onto the states of the spins or other microscopic variables
in a simple way. If we assume that this height field behaves as a Gaussian
surface, which is justified if the model is in its rough phase, then the critical
behavior follows in a straightforward fashion.(7�9) The values of the critical
exponents are related to the stiffness K of the surface and the wavelength
of the appropriate operator as a function of height.

A few models have been studied for which h is vector rather than scalar
and the ideas above generalize to this case also.(10�13) In this paper we look
at one particular model of this type, the four-state antiferromagnetic Potts
model on the triangular lattice. This turns out to be an especially lucid exam-
ple of a model with a vector height, being defined on a simple Bravais lattice
and, as we will show, possessing a very straightforward height representation.

Our approach is to study the properties of the ground state ensemble
by considering first the behavior of defects in the model at zero tem-
perature. We show that there are six distinct types of non-trivial defects,
and from the conservation laws that govern their collisions we deduce that
they have vector charges that point to the corners of a regular hexagon. We
use this observation to derive a Burgers vector for the model and hence
show that when no defects are present the system has a two-dimensional
height representation. The defects then correspond to screw dislocations
on a 2+2 dimensional lattice and we predict that pairs of them will be
attracted or repelled with an entropic Coulomb force proportional to the
dot product of their charges.

We use our height representation to deduce a number of facts about
the four-state model. First we show that it is equivalent to the three-state
Potts antiferromagnet on the bonds of a honeycomb lattice. This equiv-
alence has also been derived using a different approach by Baxter, (14) but
the derivation given here is nonetheless instructive because it respects the
symmetries of the system under permutation of states in a way that Baxter's
does not. By a simple geometrical construction we show further that the
model is equivalent to the q=3 antiferromagnet on the Kagome� lattice, a
model which has previously been studied by Huse and Rutenberg(10) who
found a height representation equivalent to ours. Employing results due to
Kondev and Henley, (15) our model is then also equivalent to the fully-
packed loop model on the honeycomb lattice with a loop fugacity of 2. We
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generalize these equivalences to several other cases, including one related to
loop models on the square lattice.

The existence of a height representation also implies, as mentioned
above, that the ground state ensemble is critical and we have verified this
by Monte Carlo simulation. Simulation of this model is not trivial, since no
single-spin-flip algorithm is ergodic and the best-known cluster algorithm,
that of Wang, Swendsen and Kotecky� , (16, 17) is not ergodic under toroidal
boundary conditions(18) and has not been proved to be ergodic for any
other case. (For models defined on bipartite lattices, however, it is known
to be ergodic.(13, 19, 20)) Here we make use of our height representation to
prove for the first time that the algorithm is in fact ergodic for the q=4
Potts model on any lattice with triangular plaquets and even coordination
number which satisfies certain topological conditions. This includes lattices
with free boundary conditions or with the topology of a sphere or a projec-
tive plane. To take advantage of this result we have performed simulations
on the projective plane as well as on the torus. The idea of changing the
lattice's large-scale topology to make a sampling algorithm ergodic appears
to be new.

The outline of the paper is as follows. In Section II we introduce the
model and study the types of defects which occur in it and their inter-
actions. In Section III we derive the height representation of the model
and thereby demonstrate the model's equivalence to various others. In
Section IV we show how the scaling exponents characterizing the large-r
behavior of correlation functions can be calculated from the height
representation and in Section V we demonstrate the existence of entropic
Coulomb forces between defects. In Section VI we describe the Monte
Carlo algorithm we use to simulate the model and in Section VII give the
results of our simulations. Finally, in Section VIII we give our conclusions.

II. DEFECTS IN THE FOUR-STATE TRIANGULAR POTTS
ANTIFERROMAGNET

The q-state Potts model is a generalization of the Ising model in which
a lattice is populated with spins si , one on each vertex i, which can take
integer values si=1 } } } q. The spin states are also sometimes referred to as
``colors,'' and we will sometimes make use of this metaphor. The energy of
a configuration is defined to be proportional to the number of pairs of
adjacent sites with the same state

H=&J :
(ij)

$si sj
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In this paper we consider the Potts model with q=4 on the triangular lat-
tice in two dimensions. This model can also be though of as a discretization
of the classical Heisenberg model in which each site has a three-dimen-
sional unit vector spin Si :

H=&J :
(ij)

Si } Sj (2)

This is equivalent to (1) up to a rescaling and an additive constant if the
Si are restricted to the corners of a tetrahedron, since then the dot product
of two spins depends only on whether they are the same or different.

In the antiferromagnetic case where J<0, similarly-colored pairs of
adjacent sites are energetically unfavorable. We refer to such pairs as
``defects.'' At zero temperature, the ground state has no defects and consists
of the ensemble of four-colorings of the lattice. Since the lattice is three-
colorable, we can introduce a finite density of the fourth color and show
that the ground state has a non-zero entropy per site. This entropy can be
calculated analytically(21) or closely bounded with series approxima-
tions;(22) its exact value is 31 ( 1

3)3�4?2&1.460998.
Consider the behavior of the model under a single-spin-flip dynamics

at zero temperature, in which we choose a random site and change its color
if this will not increase the energy. Such a dynamics allows existing defects
to diffuse, interact, and annihilate in a variety of ways, but creates no new
defects. We now show that the defects in the model fall into a number of
different classes with well-defined properties. The simplest case is that of a

defect of the form a a
b

b
in which the sites to either side of the defect pair

both have the same state (here denoted b). As Fig. 1 shows, these defects
retain this same form when they move. Moreover, it is possible for a defect
of this type to disappear entirely if it encounters a neighborhood of the
right configuration. This is shown in the rightmost portion of the figure,
where the center site in the hexagon can become a 4, resulting in a defect-
free configuration. Since these defects can be annealed away with only local
moves, and do not require interaction with any other defects, we call them
``false''; their density can be expected to fall off exponentially fast in a

Fig. 1. Defects with the same state on both sides of the frustrated bond we call ``false,''
because they can be annealed away without interacting with any other defects. The defect, and
the sites on each side of it, are shown in bold.
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Fig. 2. As a defect diffuses, it stays within one of six equivalence classes, as defined in the text.
Here we show the interaction of a defect of type X with all possible neighborhoods (excluding
symmetry equivalents). The defect, and the sites on each side of it, are shown in bold.

quench to T=0 and so can be ignored where the long-time relaxation of
the system is concerned.

This leaves us with defects a a
b

c
whose neighboring sites are in different

states b{c. As Fig. 2 shows, these defects are persistent and an isolated
defect cannot be annealed away by local moves alone. The rest of our
analysis in this section will concentrate on these ``true'' defects.

The true defects possess two properties which are conserved both
during diffusion and in interactions with other defects. The first depends on
the states a, b and c which make up the defect and its immediate
neighborhood. Since a, b and c are all different for an isolated true defect,
they divide the four spin states in the model into two pairs, where a
belongs to one pair, and the sites on either side belong to the other. In the

case of the defect 1 1
2

3
, for example, the defect sites belong to the pair [1, 4]

and the adjoining sites to the pair [2, 3]. There are three distinct ways of
dividing up the states in this fashion.

The other conserved property of a true defect is a handedness defined
as follows. The states a, b and c, in that order, describe a path which is
either clockwise or counter-clockwise on the outside of one of the faces of
a tetrahedron whose vertices are labelled with the four spin states as shown
in Fig. 3. In order that this property be correctly conserved we must in
addition stipulate that it remains the same under 120% rotations of a defect,

but changes sign under 60% or 180% ones. Thus for example the defect 1 1
2

3
considered above has a counter-clockwise (or positive) handedness, while
an inversion or 60% rotation gives us a clockwise (or negative) handedness.

Using these two conserved properties, we can divide the 72 possible
defects into 6 equivalence classes which we label X, Y, Z and X� , Y� , Z� . Here
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Fig. 3. The defect classes X, Y and Z all correspond to counter-clockwise paths on the out-
side of one of the faces of the pictured tetrahedron. The defects X� , Y� and Z� are their mirror
images and correspond to clockwise paths.

the letters denote the pairing of states and the bars (or absence of them)
denote the handedness. Representative members of the classes are shown in
Fig. 3.

Considering again a single-spin-flip dynamics, we show in Fig. 4 a
selection of possible collisions between various types of defects. Although
more complex collisions than these can occur, we always find (and it is
proved below) that X+X� � 0, X+Y � Z� , and similarly for cyclic per-
mutations. If we wish to assign a charge / to each particle such that
/(X )+/(Y )+/(Z)=0, /(X )=&/(X� ), and so on, we can do this with six
vectors pointing to the corners of a regular hexagon as in Fig. 5. We adopt
the convention that |/|=1, /(X )=(1, 0), and /(Y )=(&1�2, - 3�2). The
proof that charge is locally conserved goes as follows.

It turns out that the total charge within an area can be expressed quite
simply as a sum over the plaquets making up that area. We start by writing

Fig. 4. Examples of collisions between defects. Note that some collisions produce a false
defect, which has zero charge.
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Fig. 5. The vector charges assigned to the defects. The vectors :, ; and # are defined in the
text.

the charge inside a diamond b c
a

d
as a sum of functions of the upward- and

downward-pointing triangular plaquets, f (a, b, c)+ g(d, c, b). Since a 180%
rotation reverses the charges, we have g=&f, and since a 120% rotation
keeps them the same, f is symmetric under cyclic permutations, f (a, b, c)=
f (b, c, a)= f (c, a, b). Furthermore, since a defect-free plaquet has zero
charge, f (a, b, c)=0 if a, b, c are all different, and since rotating the
tetrahedron of Fig. 3 around the corner corresponding to spin state a rotates
the charge plane of Fig. 5 around the origin, f (a, a, a)=0 for any a.

This just leaves the case where exactly two of a, b and c are equal.
Solving the equations f (2, 1, 1)& f (3, 1, 1)=/(X ), f (3, 1, 1)& f (4, 1, 1)=
/(Y ), and so on, gives

: if [a, b]=[1, 2] or [3, 4]
f (a, a, b)={; if [a, b]=[1, 3] or [2, 4] (3)

# if [a, b]=[1, 4] or [2, 3]

where

:=\1
2

,
1

2 - 3+ (4)

;=\&
1
2

,
1

2 - 3+ (5)

#=\0, &
1

- 3+ (6)

as shown in Fig. 5. The reader can also confirm that false defects have zero
charge.
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Fig. 6. Left: the direction of the vector t along the edges of a triangular lattice. Right: the
sums � ds } B=:&;=1 around a diamond enclosing an X defect and :�2+;�2+#�2=0
around a defect-free triangle.

If the charge is conserved in all collisions as we have claimed, we
should be able to write it as an integral of some quantity around the
perimeter of the area we are interested in. It turns out that this is indeed
possible if we define a tensor B on each edge of the lattice equal to the
outer product B=t�E of two vectors, t and E. The first of these points
along the edge and gives it a direction as in Fig. 6. This ensures that B has
the necessary change of sign under 60% rotations. The second is a vector in
the charge plane which depends symmetrically on the states a and b at the
two ends of the edge thus:

E={
:�2
;�2
#�2
0

if [a, b]=[1, 2] or [3, 4]
if [a, b]=[1, 3] or [2, 4]
if [a, b]=[1, 4] or [2, 3]
if a=b

(7)

Then the charge inside a finite region of the lattice is an integral around a
counter-clockwise perimeter

� ds } B=: (2s } t) E (8)

In Fig. 6, we show this for a diamond around a single defect and for a
defect-free triangle. Since all larger regions can be formed by gluing
together diamonds and triangles like these, and since the integral cancels
along the shared edges within the region because of the sign change imparted
on B by t, it follows that the charge within any region is correctly given by
Eq. (8). This proves our contention that the charge is conserved in all
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defect collisions, since the value of the integral around a line completely
enclosing any such collision does not change when the collision takes place.

III. HEIGHT REPRESENTATION AND EQUIVALENCE TO
OTHER MODELS

The integral in Eq. (8) defines a Burgers vector for a defect in our
model. Around any defect-free region, the Burgers vector is zero, and hence
on a lattice possessing no defects the integral of B between any two points
is path independent. This allows us to define a height representation for the
model in which the height h at a site r is defined as the integral

h(r)=h(0)+|
r

0
ds } B (9)

along any path from 0 to r, where 0 is a reference site whose height is
known. The heights are thus, like the Burgers vector itself, two-dimensional
vectors living on a triangular lattice with lattice vectors :, ; and #, which
we multiply by \- 3 in order to make the lattice constant 1. In fact, it is
straightforward to show that there is a unique mapping of heights onto
spin states, which is a four-coloring of the height lattice as shown on the
left-hand side of Fig. 7. The particular permutation of the colors in this
figure depends on the definition of :, ; and # given in Eqs. (4) through (6)
and on the choice of reference site.

Once we have the height representation for the model, there are a
number of results which follow. In this section, we use it to demonstrate the
equivalence of the ground state ensemble to a number of other models,
some of which have been studied previously.

Fig. 7. Left: the mapping from heights to states. Right: integrating around a defect, in this
case an X, gives a Burgers vector of 2h=- 3 (2:&2;)=2 - 3 /.
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Fig. 8. The relationship between the four-state antiferromagnet on the triangular lattice
(dashed) and the three-state antiferromagnet on the vertices of the Kagome� lattice (bold) or
the edges of the honeycomb lattice (dotted).

First, imagine coloring the edges of the triangular lattice in a defect-
free configuration of the model with three colors :, ; and # according to
the height difference along them, as in Fig. 8. If we define two edges as
neighboring when they bound the same triangle, then neighboring edges
must have different colors since otherwise two of the vertices of the triangle
would have the same spin state. Thus the model is equivalent to a three-
coloring of the bonds of the triangular lattice in which no two adjacent
bonds are the same color.

The reverse mapping is also possible. Since :+;+#=0, the change in
heights sums to zero around any triangle, and therefore around any closed
curve, so the height and therefore the state of every site is well-defined once
we have chosen the spin state of one reference site. As there are four choices
for this reference state, every configuration of this bond-coloring model
corresponds to four ground states of the four-state triangular Potts model.

Since the edges of a lattice are in one-to-one correspondence with the
edges of its dual lattice, we can also think of the model as a three-coloring
of the edges of the honeycomb lattice, where two edges are neighbors if
they share a vertex (see Fig. 8). A simple extension of these mappings is to
put a vertex at the midpoint of each edge on the triangular lattice (or the
honeycomb lattice) and connect those vertices which fall on neighboring
edges. The result, as shown in Fig. 8, is a Kagome� lattice. (In general, this
construction is called the ``medial graph.''(23)) Thus the four-state triangular
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Potts antiferromagnet and the three-state one on the Kagome� lattice also
have equivalent ground-state ensembles.

A number of these results have appeared previously in one form or
another. Huse and Rutenberg(10) found a two-dimensional height represen-
tation for the q=3 antiferromagnet on the Kagome� lattice, which is equiv-
alent to ours once the equivalence between models demonstrated above is
taken into account. Baxter(14) (see also ref. 24) demonstrated the equiv-
alence of the four-state antiferromagnet and the bond-coloring model on
the honeycomb lattice using an approach somewhat different from ours. He
defined a cyclic ordering 4 � 3 � 2 � 1 � 4, drawing arrows from higher
states to lower ones (modulo 4) and leaving edges between states 1 and 3
or 2 and 4 blank. However, since the four-state antiferromagnet is invariant
under all permutations of the four states, not just cyclic ones, we feel that
the mapping given here better respects the symmetries of the system under
such permutations.

Kondev and Henley(15) showed that the bond-coloring model on the
honeycomb lattice is also equivalent to a fully packed loop (FPL) model
on the honeycomb lattice, where loops are defined as sets of edges alternat-
ing between two of the three colors. The loops are then contours of the
component of the height perpendicular to the direction corresponding to
the third color.(25) Each loop can have its colors exchanged without affect-
ing the surrounding configuration. Such loops are said to have a fugacity
n=2. (When n=1, the FPL model is equivalent to the triangular Ising
antiferromagnet.(26)) An exact solution for the ground state entropy of the
FPL model on the honeycomb lattice for general n has been given by
Batchelor, Suzuki and Yung(27) using a Bethe ansatz, and differs from
Baxter's solution for the entropy of the q=4 triangular Potts antiferro-
magnet(21) by exactly log 4, as we would expect given the equivalence
demonstrated above.

The equivalence between four-state antiferromagnets, three-state bond-
coloring models, and fully-packed loop models applies on other lattices as
well. If a lattice has triangular plaquets and vertices with even coordination
number, we can define an orientation on the bonds with vectors t which go
either only clockwise or only counter-clockwise around each plaquet. Then
we can define B=t�E as before, and any path around a defect-free
plaquet will have 2h=\(:+;+#)=0, so that a consistent definition of
h exists. Furthermore, if we color the bonds with colors :, ; and # then
each vertex of the dual lattice has one bond of each color. Bonds of any
two colors comprise a set of fully packet loops with fugacity 2, and these
are contours of the component of h perpendicular to the remaining color.

As an example, the lattice shown on the left-hand side of Fig. 9 has
vertices of coordination number 4 and 8, and the orientation of the bonds
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Fig. 9. Left: another lattice on which the four-state antiferromagnet has a height representa-
tion (lines with arrows), and the corresponding dual lattice (dotted). Right: the fully-packed
loops of : and ; bonds (dashed lines) corresponding to four different local spin configurations
around one of the square plaquets. This model is also equivalent to a loop model on the
square lattice where loops can collide but not cross.

can be defined as shown. The q=4 Potts antiferromagnet on this lattice is
equivalent to a bond-coloring or fully-packed loop model on its dual lat-
tice, the truncated square lattice, whose plaquets are squares and octagons.
This model was studied by Nienhuis(28) and Jacobsen(29) and is also equiv-
alent to a model on the square lattice where loops can collide but not cross.
If we take the trace over the sites with four neighbours, we are left with a
model on the square lattice where plaquets of the form a

c
b
d are prohibited,

while those of the form a
b

b
c and a

b
b
a have fugacities 1 and 2 respectively.

A similar model where the latter two types of plaquet have equal fugacity
was studied by Burton and Henley,(13) who found a five-dimensional height
representation for it.

We close this section by defining another model equivalent to the q=4
antiferromagnet. Let us define a chirality on each plaquet of the triangular
lattice according to whether the states at its three corners are oriented like
an interior or exterior face of the tetrahedron in Fig. 3, or equivalently,
whether the colors on its edges in the three-coloring model above cycle
clockwise or anticlockwise. These plaquets corresponds to the vertices of
the honeycomb lattice, and it is not hard to see that 0, 3, or 6 of the ver-
tices of each hexagon must have positive chirality. There are 12 configura-
tions of the four-state triangular antiferromagnet for each state of this
model, one for each choice of the states of two adjacent reference sites.

IV. FREE ENERGY AND CALCULATION OF SCALING
EXPONENTS

Consider the restricted entropy of the four-state triangular model for a
particular value of some (unspecified) coarse-graining of the height field h.
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It is not hard to convince oneself that this entropy is lowest when |{h| is
large, and highest for configurations that are macroscopically flat. For
instance, a three-coloring of the lattice is flat since any two sites with the
same spin state have the same height, and the set of configurations in the
vicinity of such a three-coloring contributes a large entropy to the ground-
state ensemble since every site has a choice of two colors. On the other
hand, a four-coloring whose height increases linearly across the lattice
corresponds to only one microstate, since no site has any choices at all.
Building on considerations such as these we can derive expressions for the
scaling exponents of the model. Our presentation follows that of Burton
and Henley.(13)

If the model is in its rough phase, the arguments of the previous
paragraph suggest that at large length scales it has an effective free energy
of the form

G= 1
2K}* | {h} {h* dx dy (10)

where K}* is a stiffness tensor. However, since the model is invariant under
permutations of the four spin states, and since these permutations are
equivalent to rotations of the height lattice, K must be a scalar and we
have

G= 1
2K | ( |{h1| 2+|{h2 |2) dx dy (11)

where h1 and h2 are components of the height field along any two per-
pendicular directions in the height space. (In our calculations we have
taken h1 and h2 along the directions indicated in Fig. 7.) In frequency space
this free energy decouples into a sum over independent Gaussians, and the
fluctuations in the height are given by

( |h� (q)|2)=
1

K |q|2 (12)

In real space, this gives spatial correlations between the heights at points
a distance r=|r2&r1| apart of

( |h(r2)&h(r1)|2) &
1

?K
log r+C (13)

for large r, where C is a constant.
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Quantities such as spin and local magnetization are periodic functions
f (h) of the height and hence can be Fourier expanded in the height. We can
calculate the spatial correlations in any one such Fourier component
fg B eig } h, having frequency g in height space, using the fact that h's
Fourier components are Gaussianly distributed. This gives us

( fg(r1) fg(r2)) B (eig } [h(r2)&h(r1)])

= e&(1�2) g2( |h(r2)&h(r1)|2)
tr&(d&2+') (14)

for large r where ' is the anomalous dimension of the correlation function
and d is the dimensionality of the lattice. Given that d=2 in the present
case and making use of Eq. (13) we then find that

'=
g2

2?K
(15)

If a quantity has several non-zero Fourier components, then the one with
the smallest '��i.e., the longest wavelength in height space��will dominate
for large r.

If K is not a scalar, these equations generalize to

( (h$}&h})(h$*&h*)) =
K &1

}*

?
log r+C}* (16)

and

'=
gK &1g-

2?
(17)

For instance, transforming a scalar K to triangular coordinates where basis
vectors are an angle 2

3? apart rather then orthogonal gives a matrix K$

K$=K \ 1
&1�2

&1�2
1 + and (K$)&1=

1
K \4�3

2�3
2�3
4�3+ (18)

Using the equivalence of the bond-coloring model to the fully-packed loop
model on the honeycomb lattice, and relating the vortex-antivortex correla-
tion function to the probability that two sites lie on the same loop, Kondev
and Henley(30) have shown that these models are exactly at their roughen-
ing transition and have a stiffness of K= 2

3?. Since our four-state model is
equivalent to these models, it has the same value of K. We will use these
results below to calculate the scaling exponents of various quantities for
comparison with Monte Carlo experiments.
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V. FORCES BETWEEN DEFECTS

Since the energy of a pair of defects is 2 regardless of how far apart
they are, there is no energy gradient to drive a force between them.
However, there is an entropic force, driven by the fact that the presence of
a free defect reduces the entropy within an area of radius r by an amount
proportional to log r.

In a model with a one-dimensional height representation, a defect with
Burgers vector b has an average field around it

|{h|=
b

2?r
(19)

For large r, Eq. 11 then gives a force between two defects with Burgers
vectors b and b$ of

F=
K
?

bb$
r

(20)

When coupled with a mobility 1, this gives an average velocity to the
defects of

v=1F=
1K
?

bb$
r

(21)

Such forces have been measured numerically for the three-state Potts
model on the square lattice.(31) The generalization to a higher-dimensional
height representation is straightforward. Since the free energy in Eq. (11) is
a sum of independent terms in h1 and h2 , the force between two defects
with Burgers vectors b and b$ will be proportional to b1b$1+b2b$2=b } b$.
Since the Burgers vector for a defect is equal to 2 - 3 times the charge /
on that defect (see Section III), this gives us a force of

F=
12K

?
/ } /$

r
(22)

In other words, an X and a Y will be attracted to each other, but only half
as strongly as an X and an X� , and an X and a Y� will be repelled half as
strongly as an X and another X.

VI. MONTE CARLO SIMULATION

In order to simulate correctly the properties of the ground-state
ensemble of a system, it suffices to find a set of update moves which take
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us from one ground state to another without introducing any defects, such
that every ground state can be reached from every other in a finite number
of moves on a finite lattice. An algorithm based on such a set of moves is
said to be ergodic, and it can be shown that any ergodic algorithm will
sample all ground states with equal frequency over the course of a long
simulation (see ref. 32 for example). Unfortunately, it turns out to be quite
difficult to find a suitable ergodic set of moves for the four-state Potts
model considered here. To begin with, it is clear that no single-spin-flip
dynamics can be ergodic because finite defect-free regions can be pinned
under such a dynamics, and remain pinned no matter what happens out-

side them. For instance, in the hexagon 3 4 3
1 2

2 1
every spin has at least one

neighbor of each of the other states, so no spin can change state. Since
there is a positive density of such clusters in a random ground state on a
large lattice, single-spin-flip dynamics will only explore an exponentially
small fraction of the possible configurations.

So we are forced to turn to a cluster update algorithm to simulate this
model. The algorithm we use in this paper is the zero-temperature limit of
the Wang�Swendsen�Kotecky� (WSK) cluster algorithm(16, 17) for Potts
antiferromagnets, which is defined as follows. At each step in the simula-
tion we choose two of the four colors on the lattice, identify all connected
clusters containing only these two, and, in each cluster independently,
either switch the two colors or leave them untouched with probability 1

2 .
Clearly this preserves the property that neighbors have differing states, and,
as we will show, it is computationally quite efficient.

At finite temperature the WSK algorithm is trivially ergodic, as
demonstrated by Wang et al. in their original paper.(16) With a little more
effort it is also possible to prove that it is ergodic at T=0 for all q>2 on
the square lattice(19) or more generally on bipartite lattices.(13, 20) The tri-
angular lattice however is not bipartite, and in fact the algorithm is known
not to be ergodic at T=0 on triangular lattices with toroidal boundary
conditions, at least for certain lattice dimensions.(18) In this section we
make use of our height representation to prove that the algorithm is
ergodic for certain other types of boundary conditions.

Previous proofs of the ergodicity of the WSK algorithm at zero tem-
perature have relied on defining a specific ``target configuration'' of the
spins on the lattice and demonstrating that any given configuration can
be transformed into this one in a finite number of reversible moves. For
bipartite lattices the target configurations used have been checkerboard
colorings. Here we use the same approach to prove the algorithm ergodic
on the triangular lattice but, since the lattice is not bipartite and therefore
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Fig. 10. A three-coloring of the triangular lattice. There are six such colorings for each
choice of three colors.

does not permit checkerboard colorings, we use instead a three-coloring of
the lattice as our target configuration.

There are six possible three-colorings of the triangular lattice for each
choice of 3 of the 4 colors. We illustrate one of them in Fig. 10. We define
a domain to be a connected set of sites whose colors coincide with one of
these three-colorings. The three colors in such a domain fall on three tri-
angular sublattices with lattice parameter - 3 times that of the fundamen-
tal lattice. Our goal is to add new sites to the domain, singly or in groups,
until the domain fills the entire lattice. If we can do this with reversible
cluster moves from any given starting state, then our algorithm must be
ergodic, since we can get from any state to the target and then from the
target to any other state. (It makes no difference which three-coloring we
take as our target configuration since we can get from any one to any other
in at most three steps of the WSK algorithm��one to get the three colors
right and at most two to put the colors on the correct sublattices.)

Our approach is as follows. We choose a site which lies outside our
domain, but is adjacent to it. The color of this site, call it a, differs from
the color b of the sites inside the domain on the same sublattice. If we can
switch the colors a and b everywhere inside the domain, while leaving the
color of the new site unchanged, it will now match the other sites on that
sublattice and we will have added it to the domain. (Note that the domain
now has a new three-coloring, resulting from our switching a and b.) This
can be done trivially in a single Monte Carlo move if we make the right
choice of two colors for the move, but there is a catch. The problem is that
there may be some cluster connecting the new site to a (possibly quite
distant) site in the domain via sites of colors a and b. If such a cluster
exists, then the new site will get flipped whenever we change colors within
the domain, so that its color will always differ from that of the sites on the
same sublattice in the domain. An example of such a situation is shown in
Fig. 11.

Happily, we can invoke the height representation to prove that any
state in which such a path exists must contain at least one defect, and
hence that such paths cannot exist in a ground state of the system. To see
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Fig. 11. A configuration which defeats the WSK algorithm. We would like to grow the
domain indicated by the dotted line by adding to it the spin with state 4 immediately above
it and propose to do this by changing each of the 3s in the domain into a 4. But a path of
3s and 4s connects the domain to the new site, so it will be changed to a 3 when we do this.
In the text, we show that configurations of this kind are forbidden within the ground-state
ensemble because any contractible loop of this kind must contain a defect.

this we consider a closed loop of sites formed by the path outside the
domain, completed with any path of our choice within the domain. To
make things concrete, let us suppose that a and b are the states 4 and 3 as
in Fig. 11. The portion of our closed path outside the domain consists by
definition of sites of only these two colors and hence the change in height
2h from one end to the other must be a multiple of, in this case, :. Within
the domain, on the other hand, the heights on all sites belonging to a par-
ticular sublattice are the same, so that 2h for the portion inside the domain
is just equal to the change in height resulting when we change a 3 in the
domain to a 4, or ;&# in this case, which is perpendicular to :. In general,
2h for changing some site in a three-coloring from one color to another is
perpendicular to the 2h between neighboring sites of those colors. This
means that the sum of the 2hs for the two parts of the loop cannot be zero,
and hence the Burgers vector around the loop is non-zero and the loop
must contain a defect.

Unfortunately, this does not quite prove the ergodicity of the algo-
rithm. Certainly a configuration like that in Fig. 11 can be ruled out,
because there must be at least one defect within the loop, and hence the
lattice cannot be in a ground state. (The reader might like to populate the
interior of the loop with spins just to check that this is indeed true.)
However, there is another possibility. If we have some form of periodic
boundary condition on our lattice, it may be possible for the loop to go off
one side of the lattice and come back on another and rejoin the domain
that way. It turns out that such a loop can have a non-zero Burgers vector
even when the lattice is in a ground state. In essence, the lattice possesses
a non-localized defect, without there being a defect anywhere in particular.
The crucial difference between the two types of loops is that in the first case
the loop is contractible, meaning that it can be shrunk to a point by shifting
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Fig. 12. A configuration on the torus with non-zero Burgers vector around its non-contractible
loops. The domain denoted by the line cannot grow monotonically under the WSK algorithm.

it one plaquet at a time. For a loop of this type, the situation depicted
in Fig. 11 applies, and the arguments given above are correct. If however
the loop is non-contractible, then it is possible for there to be a non-
localized defect and we cannot prove the ergodicity of the algorithm. To
give an example, we show in Fig. 12 a configuration of the model on a
lattice with toroidal boundary conditions. This lattice has two fundamental
non-contractible loops, one wrapping around the boundary conditions
horizontally, and one vertically. For the configuration shown, these two
loops have Burgers vectors of 2;+4# and 4;+2# respectively, even though
there are no localized defects. In fact, the domain inside the dotted line
shows how the algorithm can fail. Any attempt to add a new site to the
domain by exchanging two colors inside the domain will change the color
of the new site as well, because the new site is connected to the domain by
paths which wrap around the boundary conditions. This does not actually
prove that the WSK algorithm is not ergodic on this lattice, only that we
cannot prove it to be so using arguments of the type given here in which
domains gain sites but do not lose them.

However, Salas and Sokal(18) report that they found a configuration
on a 6_6 torus which can only be transformed into a small number of
others, thus showing that the algorithm is not in general ergodic on the
torus. Huse and Rutenberg, in their study of the three-state model on the
Kagome� lattice, noted a similar lack of ergodicity in a loop-flipping algo-
rithm on the torus;(10) it is easy to show that cluster flips in our model are
equivalent to concentric sets of loop flips on the Kagome� lattice and vice
versa, so these two types of moves are equivalent in terms of what con-
figurations they can reach. While these algorithms may in fact be ergodic
on an equivalence class of configurations large enough to sample the
system's statistical properties, we have no guarantee of this. It seems impru-
dent, therefore, to conduct simulations solely on a toroidal lattice.

On lattices with no non-contractible loops, however, the algorithm is,
by the arguments given above, ergodic. Examples of such lattices include
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the infinite lattice and any finite lattice with free boundary conditions,
where opposite edges of the lattice have no connection to each other.
Unfortunately, the first of these is impractical for computer simulations,
and the second suffers rather dramatically from finite-size effects. A better
solution is to perform our simulation on a lattice with periodic boundary
conditions, but with a topology chosen so that there are no non-contrac-
tible loops. The simplest example is the sphere. Because its Euler charac-
teristic is 2, there is no way to cover a sphere with a regular triangular
lattice; some sites have to have less than six nearest neighbors. Fortunately,
our proof works not just for the triangular lattice, but for any lattice where
both the height representation and the target three-coloring can be defined.
As we showed in the previous section, the height representation can be
defined for any planar lattice with triangular plaquets and even coordina-
tion number, so that we can place vectors t on the bonds oriented so that
they go only clockwise or only counter-clockwise around each plaquet. We
can also define a three-coloring on such a lattice by having colors cycle
upward or downward along t. Thus, we can for instance perform a simula-
tion on a lattice tiling the surface of an octahedron where 6 sites have four
nearest neighbors, and the WSK algorithm will be ergodic. In Fig. 13 we
depict one such lattice and illustrate how the three-coloring behaves near
its corners.

Another possible topology is the projective plane��a hemisphere with
diametrically opposing points on the equator identified. To create a lattice
with this topology, we simply take the upper half of the octahedron depicted
in Fig. 13 and identify sites along its square equator as shown in Fig. 14.
Since the projective plane has only half as much curvature as the sphere
(its Euler characteristic is 1) there are now just three sites with four
neighbors rather than six. Thus this lattice is proportionately flatter than

Fig. 13. Left: an octahedral lattice with L=4. The WSK algorithm is ergodic on this lattice.
Center: a three-coloring of this lattice around one of the vertices of the octahedron and the
definition of the orientation vector t along the bonds. Right: the structure is that of a tri-
angular lattice everywhere except at the vertices of the octahedron.
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Fig. 14. An L=3 lattice whose topology is that of a projective plane. Pairs of sites connected
by dotted lines are identified. Note the consistency of the three-coloring.

the sphere with the same number of sites. Note that the three-coloring is
well-defined for any lattice size.

Although the projective plane does possess non-contractible loops,
every such loop has the property that going around it twice makes it con-
tractible. Formally, the fundamental group 61 for the space is Z2 , the
integers mod 2. This means that the Burgers vector of any such loop must
satisfy 2h+2h=0, so 2h=0. (Kawamura and Miyashita(33) show that the
Heisenberg antiferromagnet on the triangular lattice has defects with a Z2

charge, so there are spin systems in which 2h can be non-zero even though
22h=0. This however is not the case with the present system.) Thus non-
contractible loops are tolerable as long as they have finite order, i.e., as
long as their n th multiple is contractible for some finite n. The sphere and
projective plane are the only finite two-dimensional manifolds satisfying
this condition, since both tori and Klein bottles have non-contractible
loops of infinite order.

While Monte Carlo calculations performed on spheres and projective
planes may seem outlandish, they are important in the present case in
order to rule out the possibility that lack of ergodicity is introducing a bias
into our results. The drawback is that we are forced to introduce a small
number of atypical sites into the lattice (those with only four neighbors)
which, for example, makes calculation of spatial correlation functions more
difficult. In this paper we strike a compromise by performing some (probably
non-ergodic) simulations on toroidal lattices, which give excellent statistics
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for correlation functions and other quantities, and some on the projective
plane, which give poorer statistics, but are more trustworthy. In fact, we
find that there are no physical measurements for which the two topologies
disagree, so it is possible that the simulations on the torus are ``sufficiently
ergodic'' for our purposes, although we cannot guarantee this.

Just as with the height representation, our proof of ergodicity will
work for other lattices as well, whenever we can give each bond a direction
such that the bonds around each triangular plaquet go either only clock-
wise or only counter-clockwise. It can be used for some lattices which have
a mixture of ferromagnetic and antiferromagnetic bonds, but which have
no frustration. At T=0 vertices with a ferromagnetic bond between them
can simply be identified, since they must have the same state. Then the
WSK algorithm is ergodic on such lattices if the resulting graph fits the
conditions above.

VII. RESULTS OF MONTE CARLO SIMULATIONS

We have performed extensive simulations of the four-state triangular
model using the WSK algorithm on lattices having the topology both of
the projective plane (for which the algorithm is ergodic) and of the torus
(for which it probably is not). On the projective plane we simulated
systems with linear dimension L equal to a power of two from L=4 up to
L=1024. On the torus the three-coloring of the lattice is only well defined
for L a multiple of three, so we simulated systems with L=6, 12, 24 } } } 768.
In each case simulations ran up to one million Monte Carlo steps for the
largest lattices. In order to allow accurate error estimation, and also to
examine the efficiency of the algorithm, we first measured the (exponential)
correlation time { in Monte Carlo steps as a function of system size.
Figure 15 show the results for both topologies. In each case the dynamic
exponent z, defined by {tLz, takes the value 0.74\0.02, which is com-
parable with values for cluster algorithms for ferromagnetic Potts
models(34). Correlation times for the projective plane are about a factor of
1.3 larger than those for the torus with the same value of L. This is
presumably because, as we have defined it, a projective plane of size L has
2L2+1 sites while a torus has only L2. Thus a projective plane has the area
of a torus a factor of - 2 larger, and 2z�2 &1.3.

In practical terms, since a single step of the WSK algorithm updates
a number of spins which scales with the area Ld of the lattice, the CPU
time taken to generate a given number of independent lattice configura-
tions scales as Ld+z&L2.74.

We are interested in measuring the critical exponents of the model. One
way of doing this would be first to calculate the stiffness K by measuring
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Fig. 15. Correlation times for the WSK algorithm on the projective plane (circles) and the
torus (squares) measured in Monte Carlo steps. Both lattices give a dynamic exponent of
z=0.74\0.02.

the fluctuations in the height function and relating them to K using
Eq. (12). This approach is taken in refs. 11�13, 35. Then we feed the value
of K into an equation such as (17) to calculate a critical exponent. As we
will see, however, calculating the exponents from the stiffness involves some
surprising subtleties, which make it more desirable and instructive to
measure the exponents directly.

In order to measure the critical exponents for the model, we chose two
different definitions for the order parameter and measured two-point
correlations and fluctuations for each of them. From these results we
extracted values for the correlation exponent ' by direct measurement, and
for the susceptibility exponent #�& by finite size scaling. These exponents are
not independent; we expect them to be related by the Fisher scaling law
#�&=2&'.(36, 37) Our two order parameters were defined as follows:

1. The simplest magnetization measure is just mk=Nk& 1
4N where

Nk is the number of spins on the lattice in spin state k. We refer to this as
the ``unstaggered magnetization,'' to distinguish it from our second
magnetization measure defined below. The two-point connected correlation
for this magnetization, averaged over k, is then Gc(i, j)=$si sj

& 1
4 and the

susceptibility is /=�k m2
k .

2. We also examined the ``staggered magnetization'' defined by Huse
and Rutenberg(10) for the three-coloring model on the honeycomb lattice,
to allow direct comparison with their results. In the context of the present
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model, this magnetization may be thought of as a complex number �l cl rl

where the sum is over bonds on the triangular lattice, cl represents the
color :, ; or # of bond l as defined in Eq. (7), and rl is a static reference
coloring corresponding to the color of bond l in any of the 24 possible
three-colorings of the lattice. The staggered magnetization mi on a site i can
be defined as the sum over the bonds l connected to that site and the two-
point correlation is then given by Gc(i, j)=mimj* and the susceptibility by
/=|�i mi |

2.

The staggered magnetization is in fact slightly the easier of these two
to analyze, so we examine this case first. Huse and Rutenberg(10) pointed
out that the staggered magnetization has a wavelength - 3 on the height
lattice. Using Eq. (18) to transform from Cartesian coordinates to tri-
angular ones, Eq. (17) then gives '= 4

3 and #�&= 2
3. Figure 16 shows our

simulation results for the susceptibility on the projective plane. A least-
squares fit gives #�&=0.71\0.02, which is a little greater than the expected
value, but, as Fig. 17 shows, there is a clear downward trend in the value
with increasing system size. Huse and Rutenberg saw similar behavior
in their bond-coloring model (in fact their value for #�& is almost exactly
the same as ours) and they attributed it to logarithmic corrections to
the scaling forms which arise because the height representation is at its
roughening transition.

Fig. 16. The susceptibility for the staggered magnetization on the projective plane as a func-
tion of lattice size L. The dotted line is a fit to the last five points and gives #�&=0.71\0.02.
Theory predicts #�&= 2

3 .
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Fig. 17. Estimates of #�& obtained from fits to simulation results for the staggered magnetic
susceptibility on lattices of size ranging from L up to 1024, as a function of L. These tend
downward with increasing L, presumably as a result of logarithmic corrections to the scaling
form.

Fig. 18. The connected correlation Gc(r) for the staggered magnetization on the torus. The
best power-law fit is indicated by the dotted line and gives '=1.27\0.01. Theory predicts
'= 4

3.
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Fig. 19. The connected correlation Gc(r) for the staggered magnetization on the projective
plane. While the data are not as good as those for the torus in Fig. 18, we get a compatible
value of '=1.28\0.09 for the correlation exponent.

We have also measured spatial correlations in the staggered magnetiza-
tion on both the torus and the projective plane (Figs. 18 and 19, respectively).
The results on the projective plane have larger statistical errors than those
on the torus, because of the need to stay well away from sites with local
curvature in performing the calculations. Fits to the data yield values of
'=1.27\0.01 on the torus and '=1.28\0.09 on the projective plane, in
reasonable agreement with theoretical predictions.

The situation is a little more complicated for our other definition of
magnetization. Looking at Fig. 7, we see that the mapping from heights to
spin states has wavelength 2 on the height lattice, which implies that both
the correlation exponent for the spins and the corresponding susceptibility
exponent should be equal to 1. Figure 20 shows our data for the suscep-
tibility on the projective plane. A least-squares fit gives #�&=0.84\0.01,
which is some way from the theoretical prediction, but, as Fig. 21 shows,
the value is increasing steadily with system size, so the discrepancy is again
probably due to logarithmic corrections.

However, when we look at the spin�spin correlation function, Fig. 22,
we find that '=0.35\0.01, which is nowhere near 1. Our values for the
exponents thus appear to violate the Fisher law. The explanation of this
result is as follows.

The correlation function shown in Fig. 22 is measured, naturally
enough, along one of the three principal directions on the toroidal lattice.
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Fig. 20. The susceptibility for the unstaggered magnetization on the projective plane for
systems of linear dimension L up to 1024. The dotted line is a fit to the last five points and
gives #�&=0.84\0.01, while theory predicts #�&=1.

Fig. 21. Estimates of #�& obtained from fits to simulation results for the unstaggered
magnetic susceptibility on lattices of size ranging from L up to 1024, as a function of L. These
tend upward with increasing L.
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Fig. 22. The connected correlation Gc(r) for the unstaggered magnetization on the torus.
The best power-law fit is indicated by the dotted line and gives '=0.35\0.01. Theory
predicts '= 1

3 .

If two sites lie along such a direction and their spins are in the same state,
then their heights are constrained to particular sublattices of the height lat-
tice. For instance, suppose that the distance between them is a multiple of
three, and that one site has state 1 and height (0, 0). Then the height of the
other site is a multiple of three terms, each equal to :, ; or #, all with the
same sign since t is constant along any of the lattice directions. Since
:+;+#=0, we can cancel terms in threes until only two kinds of terms
are left, say :s and ;s. Since the number of these is still a multiple of three,
and since : and ; (or more precisely, the unit vectors in those directions
on the height lattice) have a component of 1

2 along the h1 axis, the only
heights we can end up with are ones with h1=3k�2 for some integer k. This
defines a sublattice of the height lattice as shown in Fig. 23.

More generally, once we choose the distance between two sites and the
spin state on one of them, the only heights the other site can have and still
be in the same spin state are those on one of the three sublattices corre-
sponding to that state. Since the lattice constant of each such sublattice is
2 - 3, the effective wavelength of the spin operator is 2 - 3 rather than 2.
Equation (17) then gives '= 1

3 , in good agreement with our simulation
results.

Thus the Fisher scaling relation can be violated when an operator is
constrained in such a way that its effective wavelength on the height lattice
is longer than that for the corresponding susceptibility. It is well-known
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Fig. 23. The sublattice of possible height differences between two sites along a principal
lattice direction, both with spins in state 1, whose separation on the lattice is a multiple of
3 times the lattice parameter. The dashed path 2;+4: is allowed, but the dotted path
2#+2:&2; is not, since it contains terms of different signs. The wavelength of the circled sub-
lattice is 2 - 3, which implies that '= 1

3 for the spin�spin correlation function.

that the Fisher relation can fail in systems with long-range interactions, (38)

but we know of no other system with only local interactions where this is
the case.

VIII. CONCLUSIONS

In this paper we have studied the four-state Potts antiferromagnet on
the triangular lattice at zero temperature. By examining the spectrum of
defect types which can appear in the model and identifying the conserva-
tion laws which govern their interactions, we have been able to define a
Burgers vector for the model and thus show that the ground-state ensemble
has a well-defined height representation. We believe that this approach of
deriving the height representation from defect behavior may work for other
systems as well.

The height function is two-dimensional, and may be the simplest
example to date of a vector height. Using it, we have shown that the model
is equivalent to a three-state Potts antiferromagnet on the bonds of either
the triangular or honeycomb lattice, or on the sites of the Kagome� lattice.
We have also shown that pairs of defects feel entropic forces between them
in proportion to the dot product of their topological charges, and that
spin�spin correlations in the ground-state ensemble decay algebraically at
large distances.
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We have calculated exact values for a variety of critical exponents. The
scaling exponent ' for the spin�spin correlation function is of particular
interest because the wavelength of the spin operator on the height lattice
turns out to be longer than the fundamental periodicity of the height-to-spin
mapping due to a constraint on paths connecting sites along a principal
lattice direction. This gives a value of '= 1

3 even though the corresponding
susceptibility exponent #�&=1��an apparent violation of the Fisher scaling
relation.

We have also used the height representation to prove for the first time
that the Wang�Swendsen�Kotecky� cluster Monte Carlo algorithm is
ergodic for the four-state model on the triangular lattice. Our proof
however requires that the lattice have a topology which possesses no non-
contractible loops of infinite order, and this means that simulations on the
torus (which has such loops) are probably not ergodic, calling previous
simulations of this and related models into question. Simulations on lat-
tices with free boundary conditions or lattices with the topology of the
sphere or the projective plane are, on the other hand, provably ergodic,
and we have performed extensive simulations on the projective plane. We
find reasonable agreement between the values of the critical exponents
measured in these simulations and both theoretical values and values from
previous numerical studies. There are, however, significant logarithmic
corrections to scaling associated with the fact that the height model is
exactly at its roughening transition, and this means that we have to go to
extremely large lattice sizes to see the expected behavior.

Note Added. During the course of these investigations, we learned
of an unpublished manuscript by Henley which also shows that the four-
state antiferromagnet studied here is equivalent to the three-state one on
the Kagome� lattice.
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